série nº7

EXERCICE Nº1

L'espace est rapporté à un repère orthonormé direct $(0,\vec{i},\vec{j},\vec{k})$ On considère les points A(2,3,-1); B(4,0,2) et C(3,2,1)

- 1/a) Calculer les composantes du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$
 - b) Calculer sin(BAC) et cos(BAC)
 - c) Donner une équation cartésienne du plan (ABC) noté P
- 2/ Soit $Q = \{M(x, y, z) \in \xi \text{ tel que } \overrightarrow{AM}.\overrightarrow{AB} + \overrightarrow{BM}.\overrightarrow{AC} = 0\}$
 - a) Montrer que Q est un plan dont une équation cartésienne est 3x 4y + 5z = 0
 - b) Montrer que P et Q sont sécants suivant une droite Δ dont on donnera une représentation paramétrique
- 3/ Soit H le projeté orthogonale du point C sur (AB)
 - a) Calculer l'aire du triangle ABC
 - b) Déduire la distance CH

EXERCICE N°2

L'espace ξ est muni d'un repère orthonormé direct $(O,\vec{i},\vec{j},\vec{k}\,)$

On donne les points A(2,-1,1); B(0,-1,-1) et C(-2,0,-1)

- 1/a) Montrer que les points A,B et C définissent un plan P
 - b) Vérifier que le plan P à pour équation : x + 2y z + 1 = 0
- 2/a) Donner une représentation paramétrique de la droite D passant par A et perpendiculaire à P
 - b) Calculer la distance δ du point B à la droite D
- 3/ Déterminer une équation cartésienne du plan Q passant par C et de vecteur normale $\vec{n} = -\vec{i} + \vec{k}$
- 4/ Déterminer une représentation paramétrique de la droite $D' = P \cap Q$
- 5/ Montrer que D et D' ne sont pas coplanaires
- 6/ Donner l'aire du triangle ABC

EXERCICE N°3

L'espace rapporté à un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$ On donne les points A(3,2,4); B(0,3,5); C(0,2,1) et D(3,1,0)

- 1/a) Montrer que ABCD est un parallélogramme
 - b) Calculer l'aire du parallélogramme ABCD
 - c) Donner une équation du plan P contenant le parallélogramme ABCD
- 2/ Soit le point E tel que $\overrightarrow{AE} = \frac{1}{3} \overrightarrow{AB} \wedge \overrightarrow{AD}$
 - a) Montrer que la droite (AE) est perpendiculaire au plan P
 - b) Vérifier que E à pour cordonnées (2,-2,5)
 - c) Calculer le volume du pyramide ABCDE

Exercice N°4:

On considère la fonction f définie sur $[2, +\infty [par f(x) = \sqrt{2x-4} + 1.$

- 1/ Etudier le domaine de continuité de f
- 2/a) Etudier la dérivabilité de f à droite en 2. Interpréter graphiquement.
 - b) Déterminer le domaine de dérivabilité de f.
- 3/ Calculer f'(x). Dresser le tableau de variation de f.
- 4/a) Montrer que f réalise une bijection de [2 , $+\infty$ [sur un intervalle J que l'on précisera.
 - b) Tracer ζ_f et $\zeta_{f^{-1}}$ dans un R.O.N
- 5/a) Déterminer le domaine de continuité de f⁻¹, fonction réciproque de f
 - b) Etudier la dérivabilité de f⁻¹ à droite en 1
 - c) Dresser le tableau de variation de f⁻¹
 - d) Expliciter f⁻¹(x) pour tout x de J

Exercice N°5

Soit f la fonction définie sur]-1,1[par:f(x) = -1 +
$$\frac{x}{\sqrt{1-x^2}}$$

et ζ_f sa courbe représentative dans un repère orthonormé $(O,\vec{i}\,,\vec{j})$

1/a) Justifier que f est dérivable sur]-1,1[et que:f'(x) =
$$\frac{1}{(\sqrt{1-x^2})^3}$$

- b) Dresser le tableau de variation de f
- 2/a) Montrer que I(0 , 1) est un point d'inflexion de $\,\zeta_{\rm f}\,$
 - b) Donner une équation cartésienne de la tangente à $\zeta_{\rm f}\,$ au point I
 - c) Montrer que I est un centre de symétrie pour $\zeta_{\rm f}$
- 3/ Tracer $\zeta_{\rm f}$ en précisant les asymptotes
- 4/ a) Montrer que f réalise une bijection de [0,1[sur un intervalle J à préciser
 - b) Calculer $(f^{-1})'(-1)$
 - c) Expliciter $f^{-1}(x)$ pour tout $x \in J$

